En matemáticas, el conjunto de los números reales (denotado por ) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;1 y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes2 (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.2
Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal.
Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento prescindían del rigor y fundamento lógico, tan exigente en los enfoques teóricos de la actualidad, y se usaban expresiones como «pequeño», «límite», «se acerca» sin una definición precisa. Esto llevó a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa para la matemática, la cual consistió de definiciones formales y rigurosas (aunque ciertamente técnicas) del concepto de número real.3 En una sección posterior se describirán dos de las definiciones precisas más usuales actualmente: clases de equivalencia de sucesiones de Cauchy de números racionales y cortaduras de Dedekind.
Historia
Los egipcios dieron origen por primera vez a las fracciones comunes alrededor del año 1000 a. C.; alrededor del 500 a. C. un grupo de matemáticos griegos liderados por Pitágoras se dio cuenta de la necesidad de los números irracionales. Los números negativos fueron ideados por matemáticos indios cerca del 600, posiblemente reinventados en China poco después, pero no se utilizaron en Europa hasta el siglo XVII, si bien a finales del XVIII Leonhard Euler descartó las soluciones negativas de las ecuaciones porque las consideraba irreales. En ese siglo, en el cálculo se utilizaban números reales sin una definición precisa, cosa que finalmente sucedió con la definición rigurosa hecha por Georg Cantor en 1871.
En realidad, el estudio riguroso de la construcción total de los números reales exige tener amplios antecedentes de teoría de conjuntos y lógica matemática. Fue lograda la construcción y sistematización de los números reales en el siglo XIX por dos grandes matemáticos europeos utilizando vías distintas: la teoría de conjuntos de Georg Cantor (encajamientos sucesivos, cardinales finitos e infinitos), por un lado, y el análisis matemático de Richard Dedekind (vecindades, entornos y cortaduras de Dedekind). Ambos matemáticos lograron la sistematización de los números reales en la historia, no de manera espontánea, sino utilizando todos los avances previos en la materia: desde la antigua Grecia y pasando por matemáticos como Descartes, Newton, Leibniz, Euler, Lagrange, Gauss, Riemann, Cauchy y Weierstrass.
Notación
Los números reales se expresan con decimales que tienen una secuencia infinita de dígitos a la derecha de la coma decimal, como por ejemplo 324,8232. Frecuentemente también se subrepresentan con tres puntos consecutivos al final (324,823211247…), lo que significaría que aún faltan más dígitos decimales, pero que se consideran sin importancia.
Las medidas en las ciencias físicas son siempre una aproximación a un número real. No solo es más conciso escribirlos con forma de fracción decimal (es decir, números racionales que pueden ser escritos como proporciones, con un denominador exacto) sino que, en cualquier caso, cunde íntegramente el concepto y significado del número real. En el análisis matemático los números reales son objeto principal de estudio. Puede decirse que los números reales son la herramienta de trabajo de las matemáticas de la continuidad, como el cálculo y el análisis matemático, mientras que los números enteros lo son de las matemáticas discretas, en las que está ausente la continuidad.
Se dice que un número real es recursivo si sus dígitos se pueden expresar por un algoritmo recursivo. Un número no recursivo es aquel que es imposible de especificar explícitamente. Aun así, la escuela rusa de constructivismo supone que todos los números reales son recursivos.
Los ordenadores solo pueden aproximarse a los números reales por números racionales; de todas maneras, algunos programas de ordenador pueden tratar un número real de manera exacta usando su definición algebraica (por ejemplo, "") en vez de su respectiva aproximación decimal.
Los matemáticos usan el símbolo (o, de otra forma, , la letra "R" en negrita) para representar el conjunto de todos los números reales. La notación matemática se refiere a un espacio de dimensiones de los números reales; por ejemplo, un valor consiste de tres números reales y determina un lugar en un espacio de tres dimensiones.